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Article

Covariance
Adjustments for
the Analysis of
Randomized Field
Experiments

Richard Berk1,2, Emil Pitkin1,2, Lawrence Brown1,2,
Andreas Buja1,2, Edward George1,2,
and Linda Zhao1,2

Abstract
Background: It has become common practice to analyze randomized
experiments using linear regression with covariates. Improved precision of
treatment effect estimates is the usual motivation. In a series of important
articles, David Freedman showed that this approach can be badly flawed.
Recent work by Winston Lin offers partial remedies, but important problems
remain. Results: In this article, we address those problems through a refor-
mulation of the Neyman causal model. We provide a practical estimator and
valid standard errors for the average treatment effect. Proper generalizations
to well-defined populations can follow. Conclusion: In most applications, the
use of covariates to improve precision is not worth the trouble.

1 Department of Statistics, University of Pennsylvania, Philadelphia, PA, USA
2 Department of Criminology, University of Pennsylvania, Philadelphia, PA, USA

Corresponding Author:
Richard Berk, Department of Criminology, Department of Statistics, University of Pennsyl-
vania, 400 Jon M. Huntsman Hall, 3730 Walnut Street, Philadelphia, PA 19104, USA.
Email: berkr@sas.upenn.edu

Evaluation Review
1-27

ª The Author(s) 2014
Reprints and permission:

sagepub.com/journalsPermissions.nav
DOI: 10.1177/0193841X13513025

erx.sagepub.com

 at UNIV OF PENNSYLVANIA on April 2, 2014erx.sagepub.comDownloaded from 



Keywords
randomized field experiments, covariate adjustments, Neyman causal
model.

Introduction

Researchers in the social and biomedical sciences often undertake the
analysis of randomized field experiments with a regression model that
includes indicator variables for the treatment and covariates thought to
increase the precision of estimated treatment effects. The canonical formu-
lation is nothing more than a conventional linear regression analysis having
as predictors one or more indicator variables for the interventions and one
or more covariates thought to be related to the response.

Many popular textbooks recommend this approach (Cox 1958; Kirk
1982; Wu and Hamada 2000). Thus, Wu and Hamada suggest ‘‘When aux-
iliary covariates are available, use analysis of covariance and regression
analysis to incorporate such information in the comparison of treatments’’
(Wu and Hamada 2000, 84). It may not be surprising, therefore, that results
from covariance-adjusted randomized experiments are common in criminal
justice research (Maxwell, Davis, and Taylor 2010; Jeong, McGarrell, and
Hipple 2012; Koper, Taylor, and Woods 2013; Graziano, Rosenbaum, and
Schuck 2013; Asscher et al. 2013). It also may not be surprising that covar-
iance adjustments for randomized experiments are often undertaken as part
of more complicated analysis procedures, such as hierarchical linear models
(Prendergast et al. 2011; James, Vila, and Daratha 2013).

In a series of important articles, Freedman (2006, 2008a, 2008b) argues
that one should not apply covariance adjustments in the analysis of rando-
mized field experiments. There can be substantial bias, which gets smaller
in larger samples, but in practice can still be large enough to matter. There is
also no guarantee that estimation precision will improve in any given
sample. Probably most important, unless one’s regression mean function
is correct, there will be nonconstant disturbances that introduce bias into
conventional estimates of the standard errors. These biases do not go away
with increasing sample size. Consequently, confidence intervals and statis-
tical tests are compromised, and hundreds of published studies are impli-
cated. Going forward, consistent estimates of the standard errors can be
obtained using robust estimators (i.e., the ‘‘sandwich’’), but they require
large samples to be sufficiently credible.
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In a very recent article, Lin (2013) examines Freedman’s arguments with
the intent of providing improved procedures for practitioners. He replicates
Freedman’s overall results and then turns to a conceptual framework that
differs substantially from Freedman’s. Within that framework, he is able
to guarantee improved precision asymptotically. In addition, his standard
errors are unbiased asymptotically so that in large samples, valid confidence
intervals and statistical tests can be applied. There remains, however, the
need for greater clarity on a number of key points and for more practical
estimation procedures.

Lin’s article helps to motivate the approach we take in the pages ahead.
We begin with a brief review of the ubiquitous Neyman causal model. It is
the approach that Freedman adopts. We then develop an alternative formu-
lation that extends the reach of the Neyman causal model, in much the same
spirit as Lin’s work. A very practical estimator follows that performs better
asymptotically than current competitors. Valid standard errors are also
provided. The estimator’s use is illustrated with real data.

Still, Freedman’s advice for practitioners merits serious consideration.
Textbook t-tests, perhaps generalized to analysis of variance, work well.
Analyses with small samples will often benefit from increased power, but
it is precisely in small samples where covariance adjustments can fail badly.
With large samples, there will be commonly sufficient precision without
introducing covariates into the analysis. Then, the use of covariates needs
to be justified in a convincing fashion.

The Neyman Framework

The defining feature of randomized experiments is random assignment of
study units. Any conceptual framework for the proper analysis of randomized
experiments must be built around random assignment (Neyman 1923).1

There is a set of n study subjects, each of which has a potential response
under the treatment condition and a potential response under the control
condition. Some number of the subjects nT are assigned at random to
the treatment condition with nC ¼ n" nT then assigned to the control
condition. For ease of exposition, we assume one experimental group and
one control group.

There is for each subject i an observed response Yi under either the
experimental or the control condition (but not both), and an observed set
of covariate values xi. The xi are fixed over hypothetical randomizations
of the n study subjects—they do not change. Random assignment only
affects the intervention assigned and hence, which response one sees. It is
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important to stress that random assignment is the only source of randomness
in the data.2

Statistical Inference

Imagine that all of the study subjects were assigned to the treatment and
their responses observed. Imagine that all of the study subjects were
assigned to the control condition and their responses observed. Finally,
imagine computing the difference between the mean of all the responses
under the treatment condition and the mean of all the responses under the
control condition. This defines the ‘‘average treatment effect’’ (ATE) that
one seeks to estimate. The same basic reasoning can be applied to binary
response variables and population proportions. We postpone a consider-
ation of binary outcomes until later.

There is no formal role of some larger, finite population that the n study
subjects are meant to represent. Statistical inference is motivated by an
appreciation that the data being analyzed could have been different—the
data are but one realization of the random assignment process applied to the
study subjects on hand. Hypothetically, there is a very large number of
different data realizations that vary solely because the given study subjects
are being assigned at random repeatedly to the experimental and control
conditions. It is often convenient to treat the totality of these realizations
as the population to which inferences are drawn. Thus, there is no consid-
eration of how the study subjects were initially chosen, and no statistical
rationale for generalizing the results beyond those study subjects.

An intuitively pleasing plug-in estimate is routinely used: the difference
in the data between the mean response of the experimentals and the mean
response of the controls. Because of random assignment, this estimate of the
ATE is unbiased regardless of the sample size. Arriving at proper statistical
tests is not quite so straightforward.

Conventional t-tests. Very early, Fisher (1971, 44–49) showed by example
how randomization of a given set of subjects leads naturally to statistical
tests based on a hypothetical population of all possible random assignments
of the set of subjects on hand. We now understand that within the Neyman
perspective, random assignment can be understood as exhaustive random
sampling without replacement from a finite population. All of the study
subjects are assigned to either the experimental or control condition.
Randomization tests can logically follow (Rosenbaum 2009, section 3.3.2).
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But conventional practice has by and large taken a different path.
Researchers commonly favor textbook t-tests or extensions to analysis of
variance. The experimental group and control group are at least implicitly
treated as random samples from a much larger population, just as in survey
research. Sampling is usually done without replacement and all of the rea-
lized variables are random, not fixed, variables—this is not the Neyman
model. Yet, when the sample is small relative to the population, theory and
practice based on the normal distribution generally works well (Freedman,
Pisani, and Purves 2007, chapter 27, section 4). That is, the statistical tests
violate key elements of Neyman’s formulation, but usually do little inferen-
tial damage.

One can also proceed within a linear regression framework. The Neyman
framework is implicitly discarded once again, but performance is still
reasonable in practice. Thus,

Yi ¼ b0 þ b1Ii þ ei; ð1Þ

where i is the subject index, Ii is a 1/0 indicator for which ‘‘1’’ represents the
treatment condition and ‘‘0’’ represents the control condition, and ei is an
unconventional disturbance term.

In Equation 1, ei must be related to Ii, the only source of randomness, and
is neither independent and identically distributed nor mean zero. Neverthe-
less, we get a ‘‘weak’’ form of orthogonality between Ii and ei because
deviations around the means for the experimentals and controls necessarily
sum to zero (Freedman 2006, 4). An ordinary least squares estimate b̂1 is
then an unbiased ATE estimate regardless of sample size.3

Conventional regression standard errors can be used for t-tests. The
regression estimator assumes the same disturbance variance for the experi-
mental outcome and the control outcome. The usual t-test for the difference
between means allows for the disturbance variance for the experimentals to
differ from the disturbance variance for the controls. Still, conventional
regression can work well in practice unless this form of heteroscedasticity
is quite extreme.

Equation 1 is not a structural equation model. It is just a convenient com-
putational device with which to obtain ATE estimates and standard errors.
But because Equation 1 looks like the kind of linear regression used in cau-
sal modeling, it is all too easily treated as such. Misunderstandings of this
sort have real bite when covariates are introduced, as we will soon see.

In short, there are two reasonable ways to effectively approximate the
correct statistical tests derived from the Neyman model. Both of these
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methods envision conventional random sampling in which the sample is
substantially smaller than the population. Neither is consistent with the
Neyman model. But in practice, both are usually satisfactory.

Introducing covariates. It has become common practice to include in Equation
1 one or more covariates to improve the precision of b̂1. For a single
covariate,

Yi ¼ b0 þ b1Ii þ b2Xi þ ei; ð2Þ

where Xi is a fixed covariate thought to be related to Yi, and all else is the
same as in Equation 1. In particular, one still does not have a conventional
regression disturbance term, and Equation 2 is not a structural equation
model. Like Equation 1, Equation 2 is merely a computational device.

Researchers often include several covariates, all in service of improved
precision in the estimate of b1, and there can be several different interven-
tions, sometimes implemented in a factorial design. One can also find
extensions into more complicated regression formulations such as hierarch-
ical linear models. There is no need to consider such extensions here. We
can proceed more simply with no important loss of generality.4

When a covariate is added to Equation 1, it would seem that the only
change is from bivariate linear regression to multivariate linear regression.
If Equation 1 is adequate, Equation 2 can only be better. But any actual
improvements depend on certain features of the expanded equation.

Freedman stresses that Equation 2 must be first-order correct. That is,
expectations of the fitted values from Equation 2 over realizations of the
data must be the same as the conditional means of the response in the pop-
ulation composed of all possible realizations of the data. This means that
within the experimental group and within the control group, the response
must be related to the covariate in a linear manner, and the slopes of the two
lines must be the same. Any treatment effect is manifested in the gap
between the two slopes. Figure 1 is an illustration.

When Equation 2 is first-order correct, the desirable properties of
Equation 1 carry over, and there is the prospect of improved precision. The
constant gap between the two regression lines, represented by b1, is on the
average how the response differs between the two groups. One still has an
unbiased estimate of the ATE. The usual regression standard errors also can
perform reasonably well. But why should Equation 2 be correct?

There is also a more fundamental problem. Under the Neyman model, no
statistical justification exists for generalizations beyond the study subjects

6 Evaluation Review

 at UNIV OF PENNSYLVANIA on April 2, 2014erx.sagepub.comDownloaded from 



on hand. As others have pointed out (Heckman and Smith 1995; Berk
2005), without a sensible target population, the rationale for doing rando-
mized experiments can be unclear.

The point of doing an experiment is to learn about the impact of interven-
tions for some population of theoretical or policy interest. Thinking back to
the classic polio experiments, the whole point was to learn from the study
subjects how the polio vaccine would work in the population of children
around the world. What would happen if they were all vaccinated? What
would happen if they were all not vaccinated? Thus, the study subjects were
taken to be a representative sample from that population. Clearly, key fea-
tures of the Neyman causal model no longer apply. We need another way of
thinking about randomized experiments.

Another Formulation

We begin with a set of random variables Z that have a joint probability dis-
tribution with a full-rank covariance matrix and four moments.5 With those
moments as mathematical abstractions for common descriptive statistics

X

Y
ATE

Experimental Group

Control Group

Figure 1. The canonical RCT regression formulation—In the population, the
experimental and control groups have the same slope. RCT means randomized
controlled trial.
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such as means, variances, and covariances, the joint probability distribution
can be properly seen as a population from which data could be randomly
and independently realized. Alternatively, the population is the set of all
potential observations that could be realized from the joint probability
distribution. Both definitions are consistent with the material to follow, but
the second definition may seem more grounded for many readers.

Using subject–matter information, a researcher designates one of the
random variables to be the response Y and one or more other of the random
variables as covariates X. There is then a conditional distribution Y jX
whose conditional expectations EðY jXÞ constitute the population response
surface. No functional forms are imposed and for generality, we allow the
functional forms to be nonlinear.

It is important to emphasize that by taking a joint probability distribution
as a starting point, Y and X are both random variables. Key parameters of the
population are, therefore, expected values of various kinds. Standard
approaches to probability sampling treat the population variables as fixed
(Thompson 2002, section 1.1), so that the usual summary statistics can be
population parameters. Our random variable approach leads to significant
differences in the statistical theory and notation we use.

For now, we consider only a single covariate. We imagine that all
hypothetical study subjects are exposed to the experimental condition.
Alternatively, we imagine they are all exposed to the control condition.
Under the former, there is for each individual a potential outcome and a
value for the covariate. Under the latter, there is likewise a potential out-
come and a value for the covariate. Both sets of outcomes can vary over
individuals. For notational clarity, we use Ti to represent Yi when a subject
i is exposed to the treatment condition and Ci to represent Yi when a sub-
ject i is exposed to the control condition. Ti and Ci are still potential
responses.

The ATE is defined as the difference between the population expectation
E(T ) and population expectation E(C ). We also want to make use of any
association between Y and X. For that, we need to return to the idea of a
response surface.

For the hypothetical study subjects, there is a population response
surface EðT jX Þ and another population response surface EðCjX Þ. We allow
the two to differ. There is also a population linear least squares regression
under the experimental condition and another population linear least
squares regression equation under the control condition. Each is the popu-
lation linear approximation of its respective population response surface.
The linear approximations take the following form in which, thanks to least
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squares, the disturbances ni and ui necessarily have a mean of zero and are
uncorrelated with Xi.

Experimental group Ti ¼ a0 þ a1Xi þ ni; ð3Þ

Control group Ci ¼ g0 þ g1Xi þ ui: ð4Þ

No claim is made that Equations 3 and 4 result in parallel response surfaces.
No claim is made that either can reproduce the actual conditional expecta-
tions of the response in the population. The true response surfaces can be
substantially nonlinear. The flexibility of this formulation means that
Freedman’s concerns about model misspecification no longer apply or, as
we show shortly, can be constructively addressed. That is, mean function
specification errors do not matter. There can be omitted covariates, for
instance.

In the population, the average treatment effect is derived as:

t ¼ a0 " g0 þ ða1 " g1Þy; ð5Þ

where y is the expectation of the covariate X. The value of t is the difference
between the intercepts of the two equations, adjusted for the covariate X.
Our goal is to estimate the value of t.

Estimation

Consider a realized random sample of study subjects from a population of
possible study subjects, all necessarily characterized by the same joint
probability distribution. For ease of exposition, suppose that the data are
a simple random sample. Subsequently, some of the sampled units are
assigned to the treatment condition and the rest are assigned to the control
condition. There are now two sources of randomness: the random sampling
and the random assignment. This is effectively the same as drawing one
random sample from a population to use as the experimental group and
another random sample from that population to use as the control group.
When the former is exposed to the treatment condition, we get to see T.
When the latter is exposed to the control condition, we get to see C.

To obtain estimates of the ATE, we apply least squares regression to the
sample of experimentals consistent with Equation 3 and least squares
regression separately to the sample of controls consistent with Equation 4.
From these, we obtain estimates â0; â1; ĝ0; and ĝ1. The estimates can be
used in place of their respective population parameters in Equation 5. The
only remaining obstacle is to determine an appropriate value for y.
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Estimates of y and the ATE Estimator Properties

Like Freedman and Lin, we rely on asymptotics. Some of the technical
details are discussed in the appendix. A far more formal and complete treat-
ment can be found in a working paper by Pitkin, Brown, and Berk (2013).

We imagine being able to generate a very large number of random
samples from the set of potential study subjects, each with a revealed Ti

or Ci, and Xi. For any given sample, there are three possible ATE estimators
that depend on what is used for the value of y in Equation 5.

For Lin, the population from which the subjects are drawn is real and
finite. The researcher is assumed to know the population mean for the
covariate, which can be used as the value of y. In most social science appli-
cations, that mean will not be known.

As an alternative, one might compute for the experimental group regression
the fitted value at the mean of its covariate values (i.e., at the mean of the cov-
ariate for the experimental group). For the control group regression, one might
also compute the fitted value at the mean of its covariate values (i.e., at the
mean of the covariate for the control group). But because each set of fitted
values must go through the mean of its response and the mean of its covariate
values, the estimate of the ATE is no different from the ATE estimate ignoring
the covariate. The covariate adjustment changes nothing. One is simply com-
paring the mean response for the experimentals to the mean response for the
controls. Even if gains in precision are possible, those gains are not achieved.

A preferred approach. Instead of using two different estimates of the covari-
ate mean, one for the experimentals and one for the controls, one can use a
single estimate for both by pooling the covariate values across the two
groups. This makes sense because for both groups, the covariate values are
realized from the same covariate distribution in the population.

Because for any given sample the pooled estimate of the covariate mean
will likely differ from the separate estimates for the experimentals and con-
trols, and because in any given sample the covariate will likely be correlated
with the treatment indicator, the covariance adjustment now has bite. The
adjusted means for the experimentals and controls, and hence, the ATE
estimate, will differ from the unadjusted means and their ATE estimate. The
two estimates of the adjusted means and the adjusted ATE estimate are
asymptotically unbiased. That is, one obtains an asymptotically unbiased
ATE estimate even though the Equations 3 and 4 can be wrong. Some of the
intuitions behind this result are addressed in the appendix, and the formal
proof can be found in the working paper by Pitkin, Brown, and Berk (2013).6
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It is also possible to make good use of a centering strategy. One subtracts
the pooled value of y from the covariate values for both the experimentals and
controls, and otherwise applies Equations 3 and 4 as usual. Then, the differ-
ence between a0 and g0 is the ATE estimate. There is no need for Equation 5.

Suppose one were to allow y to be any value of the covariate, not just the
pooled covariate mean. Because we do not require that the population
response surfaces be the same for the experimental group and control group,
ATE estimates at other than the pooled mean of the covariate will depend
on the two estimated mean functions. These are effectively arbitrary and
unlikely to be correct. Expectations of the fitted values are not the same
as the conditional means of the response in the population. Consequently,
treatment effect estimates are biased asymptotically.

Figure 2, shows population regression lines for the experimentals and
controls that differ and are incorrect. The proper ATE estimate is found
at the pooled mean of the covariate. If the value of Xb is used instead, the
estimate is incorrect and much larger. If the value of Xa is used instead, the
estimate is incorrect, smaller, and with a different sign.

In addition, one or both of the mean functions may be nonlinear. Figure 2
shows with a dashed line a nonlinear mean function for the experimental
group. Now that gap between the mean function of the experimental group
and the mean function of the control group changes at a rate that is not
constant. A proper estimate of the ATE can still be obtained at the pooled
mean of the covariate, but not elsewhere.

Precision. Perhaps the major claim by those who favor the use of covariates
and linear regression for the analysis of randomized experiments is that the
precision of treatment effect estimates will be improved. Consider a varia-
tion on our population model.

Ti ¼ a0 þ a1Xi þ fiT þ xi; ð6Þ

Ci ¼ g0 þ g1Xi þ fiC þ zi: ð7Þ

In Equation 6, fiT represents for experimental group member i any popula-
tion disparity between the conditional expectation from the linear least
squares regression and the conditional expectation of the response function.
In Equation 7, fiC represents for control group member i any population dis-
parity between conditional expectation from the linear least squares regres-
sion and the conditional expectation of the response function. Both
equations also have new disturbance terms xi and zi. These are conditional
deviations in the population, for the experimental group and the control
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group, respectively, between response values and the true conditional
means. For the experimental group and control group separately, they are
the ‘‘true’’ disturbances around the ‘‘true’’ response surface.

In Equations 3 and 4, the fitting disparities and the true disturbances
were combined in ni and ui. Because Equations 3 and 4 were least squares
regressions, the combined disturbances ni and ui were uncorrelated with
their respective covariate values. One can show that this prevents asympto-
tic bias in sample estimates of the ATE. But the unknown fitting disparities
affect estimates of the residual variance in a perverse manner (Pitkin,
Brown, and Berk 2013).

It can then be shown that the estimated asymptotic standard error for the
estimated ATE is

dSEðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dMSET

nT
þ
dMSEC

nC
þ 1

2
ðâ1 " ĝ1Þ

2 ŝ
2
x

n

s

; ð8Þ

X

Y
ATE

Experimental Group

Control Group

XXa Xb

Linear Fit

Linear Fit

Nonlinear Fit

Figure 2. RCT population regression with different slopes for the experimental
group and the control group. RCT means randomized controlled trial.
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where subscripts T and C refer to the experimental group and control group
respectively, n denotes a number of observations, s2 represents a variance,
MSE is a regression mean squared error, and a1 and g1 are the regression
coefficients associated with the covariate as before. All of the symbols with
‘‘hats’’ are estimates from the sample. The dMSE from each equation can be
separately obtained for the experimentals and controls as part of
conventional regression output.

In Equation 8, dMSE has two components: the estimated variance of
the true disturbances around the population response surface and the
estimated variance of disparities between the expectation of the condi-
tional means from the population linear regression and the actual
population conditional means. Their sum constitutes the usual mean
squared error of a regression and in practice, the two components can-
not be disentangled.7

One can prove that asymptotically, dSEðtÞ will almost always be smaller
than the standard error that results when the covariate is excluded (Pitkin,
Brown, and Berk 2013). It can be slightly larger if the covariate is unrelated
to the response and should not, therefore, have been included in the analy-
sis. One gives up a degree of freedom with no compensatory reduction in
the residual variance.

More Than One Covariate

Generalization beyond a simple covariate is straightforward. We begin by
expanding the number of covariates in the population linear regressions.

Ti ¼ a0 þ a1xi1 þ . . .þ apXip þ fiT þ ni: ð9Þ

Ci ¼ g0 þ g1xi1 þ . . .þ gipXp þ fiC þ ui: ð10Þ

The ATE definition must be adjusted accordingly, and the estimator falls
in line. Thus,

t̂ ¼ ð !T " !CÞ " !X
0ðâ" ĝÞ: ð11Þ

!X is a vector of the p covariate means for the experimental group and
control group combined.8 These may be estimated from the data as described
earlier. The values of â and ĝ are vectors of the p estimated regression coeffi-
cients (but not the intercepts) for the experimental and control group, respec-
tively. As before, if one works with centered covariates, the difference in the
intercepts ðâ0 " ĝ0Þ is the ATE estimate.9 Then, Equation 11 is unnecessary.
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dSEðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dMSET

nT
þ
dMSEC

nC
þ ðâ" ĝÞ0

P̂
xðâ" ĝÞ

N

s

: ð12Þ

Equation 12 is the new expression for the estimated standard error of t̂, in
which all of the previous notation carries over, and

P̂
x is the sample covar-

iance matrix of the predictors for the pooled data. As before, the two dMSE’s
can be routinely obtained from their respective regression output. The same
holds for all of the arguments in Equation 12. If one does not have access to
a programming language such as in R or in STATA, dSEðtÞ can be easily
obtained with a pocket calculator. dSEðtÞ has excellent performance asymp-
totically (Pitkin, Brown, and Berk 2013).10

Finally, Equations 9 and 10 assume that the included covariates are
determined once and for all before the regression analysis begins. There
is no model selection. For example, trying various combinations of covari-
ates in search of the combination that yields the smallest value for dSEðtÞ is
ruled out. Just as in any kind of regression analysis, model selection can
lead to seriously biased parameter estimates and statistical tests that do not
perform properly (Leeb and Pötscher 2006; Berk et al. 2010). If the sample
size is at least several times larger than the number of prospective covari-
ates, it will often make sense to simply include all of them.11

Binary Responses

The mean of a binary variable coded 1 and 0 is a proportion. One might
expect, therefore, that our formulation can apply to binary response
variables. The ATE becomes the difference in proportions rather than the
difference in means.

Perhaps unexpected is that one can proceed with ordinary least squares
just as before. The estimate of ATE is asymptotically unbiased, and the
sample version of Equations 11 and 12 still apply. However, because of the
linear form of regression fit, one can in principle obtain estimates of the pro-
portions for the experimentals and controls that are larger than 1.0 or
smaller than 0.0. It follows that the difference in the proportions can be less
than "1.0 or more than 1.0.

Recall that the estimate of ATE is obtained at the pooled average of the
covariate means for experimentals and controls. Typically, this will locate
the ATE estimate toward the center the covariate distribution where extra-
polations outside of the "1 to 1 range do not occur. However, if the
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covariate distributions for the experimentals and controls have little or no
overlap, and the covariate slopes are very different, it is possible to arrive
at ATE estimates larger that 1.0 or smaller than "1.0. Fortunately, because
the experimentals and controls are both random samples from the same pop-
ulation, this is a highly unlikely occurrence unless the sample size is very
small (e.g., <20). Moreover, the ATE standard errors should show that the
point estimates are not to be taken very seriously.12

Count Responses

The methods proposed should work adequately for count data. Each count is
simply treated as a quantitative response. The ATE is again the difference
between conditional means. Our standard errors apply.

Probably the major concern is obtaining fitted values less than 0. Just as
with binary data, this should be a very rare occurrence found only in very
small samples. And again, the standard errors should convey proper caution.

Working With Convenience Samples

By and large, RCTs are not conducted with random samples. The usual
practice is to work with convenience samples. Our approach does not for-
mally apply when the units randomly assigned are not a random sample
from a larger population.

Nevertheless, under the right circumstances, one may be able to credibly
proceed as if the convenience sample is a random sample. One should try to
make a convincing argument that treating the data as a random sample is
reasonable. That will depend on how the sample was constructed and on the
nature of both the intervention and the response.

For example, from a population of prison inmates eligible for jobs
reserved for trustees, the positions may be filled as openings occur from
a waiting list ordered chronologically by the admissions date. Those who
have been waiting the longest are chosen first. One certainly can think of
ways in which such a sample differs from a true random sample, but the
differences may not be sufficiently important. Do inmates who have been
longer on the waiting list differ substantially from those who have been
shorter on the waiting list in ways related to their potential responses under
experimental and control conditions? If not, then perhaps a randomized
experiment using the inmates with trustee jobs may usefully fit within our
formulation. For the experiment, the population to which generalizations
can be made is all trustee inmates in that prison.13
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A Brief Example

Beginning on October 1, 2007, the Philadelphia Department of Probation
and Parole (ADPP) launched a randomized experiment to test the impact
on recidivism of reducing the resources allocated to low-risk offenders
(Berk et al. 2010). Enrollment of low-risk offenders began on that date.
At intake, each probationer or parolee was assigned a risk category devel-
oped for the ADPP to forecast which offenders were unlikely to be arrested
for new crimes while under supervision. Those projected to be low risk
were included in the experiment until the target sample size of 1,200 was
reached. Enrollment proceeded sequentially.

Although the study subjects were not literally a random sample of
parolees and probationers, it is perhaps reasonable to treat the study subjects
as a useful approximation of a random sample of low-risk parolees and pro-
bationers in Philadelphia for several years before and several years after the
study. The number of parolees over that time is well over 200,000 and that
was the population to which inferences were to be drawn. There was no evi-
dence of short-term secular trends in the mix of probationers or parolees
over that interval. There were also no important changes in the State Penal
Code or ADPP administrative practices.

Shortly after intake, the equivalent of a coin flip determined the arm of
the experiment to which a low-risk offender was assigned. Approximately
half were assigned at random to the Department’s regular form of supervi-
sion, and the reminder were assigned at random to what one might call
‘‘supervision-lite.’’ For example, mandatory office visits were reduced from
once a month to once every 6 months.

The outcome of interest was binary: whether there was a new arrest
within the 12-month follow-up period. After a 12-month follow-up, 15%
of the control group were rearrested compared to 16% of the experimental
group. Using the standard two-sample t-test, the null hypothesis of no
difference could not be rejected at anything close to conventional levels.
Supervision-lite had virtually no demonstrable impact on recidivism. The
weight of the evidence supported a dramatic reduction in supervision for
low-risk offenders. As a result, the ADPP reorganized its supervisory
resources accordingly.

Table 1 shows three ATE estimators and their standard errors. The first
estimator is nothing more than the difference between proportions. Its esti-
mated standard error is computed by the conventional textbook formula.
The second estimator is based on the usual covariance adjusted approach
that Freedman criticized. The third is our recommended approach. For the
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last two, we included three covariates: the risk score used to identify the
low-risk offenders, race, and the age at which a first arrest was recorded.

We included the risk score because it was derived from a large number of
predictors related to recidivism and because it had a strong association with
rearrest for the full set of offenders. That is, it forecasted well across all
types of offenders. We expected a modest association at best for the low-
risk subset of offenders. We included race because it was on political
grounds excluded from the set of predictors used to construct the risk score
and also had a demonstrated association with risk. We included the age vari-
able even though it has been incorporated in the risk score because it might
have some association with response than had not been captured in the risk
score.

Table 1 shows that all three methods have effectively the same ATE
estimate and standard error. One cannot reject the null hypothesis of no dif-
ference for any of the estimators. We also estimated the standard error using
the nonparametric bootstrap, which like all bootstrap procedures is only jus-
tified asymptotically. The estimated standard error is 0.0184, virtually the
same as the other standard error estimates.

With the sample size of 1,157, there are effectively no concerns about
small-sample bias. Each estimation approach can put its best foot forward.
Why do they too all perform so similarly?14 For these data, the multiple
correlation between the covariates and the response is essentially zero.
The covariance adjustments use up three degrees of freedom with no gain
in precision. In retrospect, the lack of association makes sense. The off-
enders who were subjects in the experiment had already been selected
using almost all of the predictor information available. In short, there
was no reason to go beyond the conventional difference in means and a
two-sample t-test.

Table 1. Three Estimators for the Binary Response of Rearrest During the ADPP
‘‘Low-Risk’’ Experiment.

Estimator ATE Estimate SE

Random X, no covariance adjustments 0.013 0.0179
Fixed X, conventional covariance adjustments 0.011 0.0183
Random X, recommended covariance adjustments 0.012 0.0182

Note. ADPP ¼ Philadelphia Department of Probation and Parole; ATE ¼ average treatment
effect; SE ¼ standard error.
N ¼ 1,157.
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Although the almost total lack of association between the covariates and
the response variable is probably unusual, several other criminal justice
experiments we reanalyzed were not dramatically different. None of the
relevant multiple correlations were larger than .36. Simulations we have
performed indicate that precision is not likely to be meaningfully improved
unless the multiple correlation is larger than about .40.

For example, we reanalyzed parts of the Portland (Oregon) Domestic
Violence Experiment (Jolin et al. 1996) using data obtained from the
Inter-University Consortium for Political and Social Research. The key
intervention was the creation of a special police unit devoted to misdemea-
nor domestic violence crimes. We considered three postintervention
outcomes reported by the victim: counts of the number of times beaten
up, threatened, or hit. We worked with a sample size of 396 cases. The high-
est multiple correlation with the covariates was for the threat outcome: .36.
With no covariates, the estimated ATE was .23, effectively zero with counts
that often ranged into the 20s. When covariates were introduced, the esti-
mated ATE varied from .29 to .30 depending on the estimator. Over all
three estimators, the estimated standard error ranged from .24 to .26. Again,
the simple difference in means and the textbook t-test was all that was
needed.

Conclusion and Recommendations

Freedman effectively critiques regression analyses of randomized experi-
ments in which covariates are introduced. But in our view, there are more
fundamental problems. Freedman works from the Neyman formulation that
imposes significant constraints on how practitioners can proceed. Because
the covariates are treated as fixed, generalizations beyond the data on hand
have no formal rationale.

Lin implicitly loosens the ties to the Neyman approach by making
use of a real, finite population from which the data can be treated as
a random sample. His conclusions are less pessimistic than Freedman’s.
However, his proposed estimator will usually not be operational in prac-
tice, and its conceptual foundations could benefit from greater clarity
and reach.

We offer a formulation that explicitly addresses the need to port the
results from any randomized experiment to a larger population. There are
still risks and in practice, complications will often arise. But in the presence
of covariates, our ATE estimates are asymptotically unbiased even when
the linear regression formulation is first-order incorrect. Omitted variables
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or wrong functional forms do not compromise the ATE estimates. Our
asymptotic standard errors offer greater precision than current alternatives
and should work well in large-sample applications. Even in small samples,
they can provide some protection against ATE estimates that are likely to be
unreasonable. To enjoy these benefits, however, practitioners will require
data from a real random sample or be able to make a convincing case that
the data on hand can be usefully treated as such.

Still, one has to wonder if any of these covariance-based options are
really worth the trouble. Simple differences in means or proportions are
unbiased ATE estimates under the Neyman model or under random sam-
pling. No asymptotics are required. One also has textbook tests that are
valid with random sampling, and which work reasonably well under the
Neyman formulation. Possible gains in precision from covariance adjust-
ments are in principle most needed with small samples, a setting in which
they currently have no formal justification.

Appendix

The combination of random predictors and unknown nonlinear response
surfaces raise issues that the Neyman-fixed predictor approach side-
steps. Although this is not the appropriate venue for reviewing our
underlying mathematics (see Pitkin, Brown, and Berk 2013), many
important insights into our approach can be gained through simple
visualizations.

Consider a bivariate joint probability distribution composed of random
variables Z. The joint distribution has means (called expectations), var-
iances, and covariates much like an empirical population composed of fixed
variables. Therefore, the joint probability distribution can be properly seen
as a legitimate population from which each observation in a sample is ran-
domly and independently realized from that distribution. Alternatively and
with perhaps fewer abstractions, the population can be conceptualized as all
potential study subjects that could be realized from the joint probability
distribution.

Using subject–matter information, a researcher designates one of the
random variables as a predictor X, and another the random variable as a
response Y. Unlike conventional regression formulations, these designa-
tions have nothing to do with how the data were generated.

We can address our key points for now with a single predictor and a sin-
gle response. Within the joint probability distribution, there is a conditional
distribution Y jX . The expectations of this conditional distribution EðY jX Þ
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can be called a ‘‘response surface.’’ In less formal language, the response sur-
face is the population mean of the response for each value of the predictor.
Figure A1 is a two-dimensional plot showing with the dotted line a popula-
tion response surface EðY jX Þ.

In Figure A1, the solid black line represents the population linear least
squares regression of Y on X within the joint probability distribution. As
such, it is a linear approximation of the population response surface. The
true response surface and its linear approximation usually will be unknown.

Each observation in data on hand is taken to be a random realization for
the joint probability distribution. A sample is a set of realizations produced
independently of one another. The researcher wants to estimate features of
the joint probability distribution from the data on hand. There are two
approaches that differ by the manner in which the predictor values in the
data are viewed.

First, the predictor values can be treated as fixed once they are randomly
realized. In other words, one envisions independent repeated realizations of
the data, but only for cases with the same set of predictor values in the data
on hand. This comports well with common practice, especially in econom-
ics. As a formal matter, the sample can be used for generalizations to a joint
probability distribution in which only the sample predictor values are found.

X

Y

True Response Surface

True Linear Approximation

Estimate

Estimate

Figure A1. A random variable X and random variable Y from a joint probability
distribution.
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For example, if there are no individuals older than 50 in the sample, general-
izations of the results to individuals older than 50 have no formal justifica-
tion. In short, sample estimates are conditional on the realized predictor
values.

Second, the predictor values can be treated as random even when those
values are for covariates used in a regression analysis. In other words, one
envisions independent repeated realizations of the data, with both the y
values and the x values free to vary as they do in the joint probability dis-
tribution. One can formally generalize to the full joint probability distribu-
tion, which can be very desirable in policy-driven randomized experiments.
The price is a more complicated conceptual framework and a reliance on
asymptotic results. But, sample estimates are unconditional with respect
to predictor values.

We adopt the second approach. For ease of exposition, suppose for the
moment that Y is a deterministic function X and that there are two sets of
realized data from the joint distribution. That is, there are no disturbances
contained within the Y values of either sample. The blue circles represent
one sample and the red circles represent the other sample. The blue line
is the sample least squares line for the blue data, and the red line is the sam-
ple least squares line for the red data. As straight lines, neither can capture
the true nonlinear response surface. In addition, both lines differ from the
true population linear approximation of the true response surface, even
though both conditional relationships are deterministic.

Requiring that Y be a deterministic function of X is unrealistic. Suppose
now that there are conventional disturbances. The dotted line still represents
the true conditional expectations of Y given X : EðY jX Þ. But now the red
and blue circles are the conditional means of Y given X for the two sets
of realized data. Figure A2 is meant to convey how any least squares line
from a sample will be a biased estimate of the population linear
approximation.

With a nonlinear response surface and the predictor a random variable,
any set of realized values will necessarily provide an incomplete picture of
the population linear approximation. Biased estimate follows. But the bias
disappears asymptotically when the full response surface is revealed—
the slope and intercept of a sample regression line are asymptotically
unbiased estimates of the slope and intercept of the population linear
approximation.

Figure A2 is much like Figure A1, except there is now a population experi-
mental group shown above a population control group. Each is assigned to a
treatment condition or a comparison condition, respectively. The two true
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response surfaces are nonlinear but for now, parallel. All vertical distances
between the two represent the average difference in their conditional expec-
tations and define the ATE. For any value of X, the ATE is the same.

There are two population linear approximations, one for the experimen-
tal group and one for the control group. Because the two response surfaces
are parallel, the vertical distance between the lines is also the ATE. As
before, the sample least squares lines are biased. But as before, the bias
declines with larger sample sizes so that both of the sample slopes and both
of the intercepts are asymptotically unbiased. As shown in the figure, how-
ever, sample regression lines are not likely to be parallel (hence the bias).

It might seem, therefore, that a least squares line for the experimental
group and a least squares line for the control group would provide the nec-
essary information for a good estimate of the ATE. If the number of obser-
vations in the experimental group is the same as the number of observations
in the control group, and the covariate is mean centered, the difference in
the intercepts is an unbiased estimate of the ATE. No asymptotics are
required because the bias in the sample regression for the experimental
group and the bias in the sample regression for the control group cancel out.
Moreover, if the sample sizes are different but known, unbiased estimates
may be obtained by computing the correspondingly reweighted average
of the two intercepts.

X

Y
True Response Surfaces

True Linear Approximations

Estimate for controls

Estimate for Experimentals

ATE

Figure A2. A joint probability distribution with an experimental and control group:
parallel response surfaces. The higher response surface is for the experimental
group, and the lower response surface is for the control group.
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In practice, it will be unusual for a researcher to have parallel true response
surfaces for the experimental group and the control group. In practice, more-
over, the nature of the true response surfaces will be unknown. Prudence dic-
tates, therefore, allowance for true response surfaces that are not parallel.

Figure A3 provides an example. Because the true response surfaces are
not parallel, the distance between them is not constant. The same applies to
the true linear approximations. Yet, as population least squares lines, both
linear approximations must pass through their respective means for the
response Y and the mean of the covariate X. It follows that the difference
between the linear approximations at the expectation of the covariate
defines the population ATE.

Finally, because the sample least squares lines are asymptotically unbiased
estimates of their population linear approximations, the distance between the
sample least squares line for the experimental group and the sample least
squares line for the control group computed at the mean of the covariate is
an asymptotically unbiased estimate of the population ATE. These results
generalize to situations in which there is more than one covariate.

In practice, a good way to proceed in large samples is to center each cov-
ariate on its pooled mean for the experimental and control groups and use

X

Y

True Response Surfaces

True Linear Approximations

Estimate for Controls

Estimate for Experimentals

ATE

X

Figure A3. Joint probability distribution with an experimental and control group:
nonparallel true response surfaces parallel response surfaces. The higher response
surface is for the experimental group, and the lower response surface is for the
control group.
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the difference between the intercepts of the two sample least squares lines
as the ATE estimate. The expression we provided for the standard error will
then allow proper statistical tests and confidence intervals.
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Notes

1. The Neyman framework is often called the Neyman–Rubin model because of

important extensions and enrichments introduced by Donald Rubin (Holland

1986). The Neyman–Rubin model dominates current thinking about the analy-

sis of randomized experiments and quasi experiments (Rosenbaum 2009). But

for our purposes, Neyman’s foundational work is what’s relevant.

2. Despite common practice, covariates cannot be ‘‘mediators’’ under the Neyman

model. Mediators are variables that can be altered by the intervention that, in

turn, impact the response. They depend necessarily on the intervention

assigned. In contrast, Neyman covariates are measured before an experimental

intervention or if not, are on theoretical grounds treated as causally unaffected.

The study of mediator variables requires a very different formulation within

structural equation modeling traditions (Wu and Zumbo 2008). The Neyman

model no longer applies.

3. One necessarily assumes there is no systematic measurement error in the

response and no measurement error of any kind in the treatment indicator. These

requirements would be no less essential were one analyzing an experiment

using a conventional t-test on the difference between means.

4. Stratifying by covariates can also improve precision (Miratrix, Sekhon, and Yu

2013). But the approach differs from regression and is beyond the scope of this

article. See Pitkin, Brown, and Berk (2013) for a proper treatment. There are a

variety of other matching procedures, but in general covariance adjustments are

more effective if the goal is increased precision.

5. These requirements of the joint probability distribution rarely matter in practice.

6. An approach taken by Imbens and Wooldridge (2009) has many parallels, but

they assume that the model is correct.

7. Here, one only needs to estimate the sum of the disturbance variance and the

variance of the fitting disparities.
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8. As pointed out earlier, if the separate covariate means for the experimental

group and the control group are computed from the data and used, one is

returned to the ‘‘naive’’ estimator from no gains in precision are possible.

9. The centering is done with covariate means computed from the pooled data.

10. If requested, the authors can provide code in R for estimates of the proper stan-

dard errors.

11. As already noted, the covariates are included solely to improve precision. They

have no subject–matter role in part because we allow the regression equations to

be wrong. One happy result is that high correlations between the covariates are

of no concern unless they are so high that the usual least squares calculations

cannot be undertaken.

12. We have just begun to explore whether our formulation can be properly applied

to the full generalized linear model and in particular, binomial regression. The

technical issues are challenging.

13. A less powerful generalization approach employs stratification. One subsets the

data into groups with similar values for the covariate. For each of these groups,

a separate analysis is undertaken. The approach loses power because the orig-

inal sample is spread across strata. And with smaller samples, asymptotic prop-

erties may not be very comforting. Details can be found in Pitkin, Brown, and

Berk (2013).

14. All three estimated standard errors are from a single data set. Size comparisons

across the estimated standard errors convey little about their average relative

performance. Moreover, there is an apples and oranges problem because fixed

X approaches and random X approaches are addressing somewhat different

sources of uncertainty.
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